Characterization of Probe Dynamic Behaviors in Critical Dimension Atomic Force Microscopy
نویسندگان
چکیده
This paper describes a detailed computational model of the interaction between an atomic force microscope probe tip and a sample surface. The model provides analyses of dynamic behaviors of the tip to estimate the probe deflections due to surface intermittent contact and the resulting dimensional biases and uncertainties. Probe tip and cantilever beam responses to intermittent contact between the probe tip and sample surface are computed using the finite element method. Intermittent contacts with a wall and a horizontal surface are computed and modeled, respectively. Using a 75 nm Critical Dimension (CD) tip as an example, the responses of the probe to interaction forces between the sample surface and the probe tip are shown in both time and frequency domains. In particular, interaction forces between the tip and both a vertical wall and a horizontal surface of a silicon sample are modeled using Lennard-Jones theory. The Snap-in and Snap-out of the probe tip in surface scanning are calculated and shown in the time domain. Based on the given tip-sample interaction force model, the calculation includes the compliance of the probe and dynamic forces generated by an excitation. Cantilever and probe tip deflections versus interaction forces in the time domain can be derived for both vertical contact with a plateau and horizontal contact with a side wall. Dynamic analysis using the finite element method and Lennard-Jones model provide a unique means to analyze the interaction of the probe and sample, including calculation of the deflection and the gap between the probe tip and the measured sample surface.
منابع مشابه
Cantilever tilt causing amplitude related convolution in dynamic mode atomic force microscopy.
It is well known that the topography in atomic force microscopy (AFM) is a convolution of the tip's shape and the sample's geometry. The classical convolution model was established in contact mode assuming a static probe, but it is no longer valid in dynamic mode AFM. It is still not well understood whether or how the vibration of the probe in dynamic mode affects the convolution. Such ignoranc...
متن کامل"Dynamic Modes of Nano-particle Manipulation"
In this paper, dynamic behavior of nanoparticle motion during nanoprobe-based manipulation is investigated. Pushing, pulling or picking manipulation of the particles results in different behavior of rolling, sliding, sticking, or rotation. For a given point of contact of the nanoprobe tip on the particle, nanoprobe load magnitude and direction and critical frictional forces are obtained in all ...
متن کاملHigh Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)
In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...
متن کاملCalibration of colloid probe cantilevers using the dynamic viscous response of a confined liquid
Articles you may be interested in Adhesive-free colloidal probes for nanoscale force measurements: Production and characterization Rev. Improved in situ spring constant calibration for colloidal probe atomic force microscopy Rev. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy Rev. A calibration method for lateral forces for use with colloidal probe f...
متن کاملImaging artefacts in atomic force microscopy with carbon nanotube tips
Dynamic atomic force microscopy (dynamic AFM) with carbon nanotube tips has been suggested as an enabling tool for high precision nanometrology of critical dimension features of semiconductor surfaces. We investigate the performance of oscillating AFM microcantilevers with multi-walled carbon nanotube (multi-walled CNT) tips interacting with high aspect ratio structures while in the attractive ...
متن کامل